
Quantifying the difficulty of object recognition tasks via  
scaling of accuracy versus training set size 
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Processing in C cells  
MAX Function of S cell receptive fields. 

 Neocognitron/HMAX-type hierarchical feed
-forward model of visual cortex “what” (ventral)
 pathway (V1 / V2 / IT) with Hebbian learning.  

 High performance parallel code using MPI,
 vector intrinsics, and Cell Broadband Engine. 

 Can take as input any image format supported
 by open source GDAL library, or video format
 supported by open source FFMPEG library. 

 On a cluster of 20 Opteron cores each with  
a dedicated Cell chip, PANN can process
 “YouTube”-quality video (200x200 pix) in  
real time (> 20 fps).  

Visual Cortex Model 

“WHAT” PATHWAY 

IT 

V2, V4 V1 

“WHERE” PATHWAY 

Figure adapted from Hans Moravec, “When will computer hardware match
 the human brain?”, J. Evolution &Technology, 1998. 
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The Scale of the Human Brain 
Units:      ~1011 neurons 

  ~1015 synapses 
  [~104 synapses/neuron] 

Temporal rates: 10 Hz   
  c.f. GHz computer 

Performance: 10 PetaFLOPS  
  c.f. Roadrunner 1.1 Petaflops 

Energy consumption: ~20 W  
  c.f.  ~200W GHz computer 

Memory: ~synapses 1015 bits 
  c.f. 100 Terabytes computer 

Visual Experience: 1 TeraPixel/day,  
  30 PetaPixels/lifetime 

Hierarchical models of primate visual cortex  
(Neo-cognitron/HMAX) have been shown to
 perform well in object identification tasks [1-5].   
We consider the performance of these models as
 we scale them to the size of human visual cortex,
 and train them with imagery sets at the scale of
 human visual experience.   

We present quantitative criteria for assessing
 when a set of learned local representations is
 complete, based on its statistical evolution with
 the size of unsupervised learning sets. We also
 quantify the difficulty of different object recognition
 tasks via the improvement in classification
 performance with the size of the supervised
 training set. Specifically we find a universal form
 where accuracy = a + b log(N), where a, and b
 are constants that depend on the details of the
 system architecture and layer representations and
 N is the number of images in the training set.  

Introduction 

Data Sets We test our model using standard data sets (Caltech256) [7]  
and public domain images we selected from Flickr.com.   
We also consider rendered images using 3ds Max. 
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Bounds on Convergence of  
Classification Accuracy for Large Datasets 

Image 

Network 

Classifier 

x1 xN x2 … 

s1 sN s2 … 

y1 yN y2 … 

Binary Classification 
The output label y is a variable Bernoulli [ p(y|x;α) ] such that  

p1|1(N)= p(y=1|x=1; α*)          1 
N ∞ 

p 0|0 (N)=p(y=0|x=0; α*)          1 
N ∞   

The task of the classifier is to find the best parameters α* so that the limit of perfect accuracy is approached.   

Probably estimation for large data sets  

The Kulback –Leibler divergence DKL(α* || α ) measures the ‘distance ‘ between  
the best estimate α* and the actual estimate after N samples. 

For a Bayesian (optimal) estimate of the α in N steps we have (Clark  & Barron 1990 [6]) 
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DKL(α* || αN ) = c/N + (K/2N) ln N    so that  pa|b(N)  p*a|b (1 - (K*/2N) ln N )  a,b=0,1    
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Conclusions 

  Why is the visual system so large? To match the amount of visual experience?  
Can large-scale models approach human performance? 

  The brain has a (very large) finite number of parameters that are  
learned through visual experience, and there are universal bounds on  
how fast a finite system  (however large) can learn. 

  More complex object classes require in general more parameters for  
the same accuracy and a commensurate amount of visual experience (N > K).  

  The universal bounds correspond to optimal learning from examples and  
control both the (unsupervised) learning of neuronal tunings (in V1 and  
other layers) and the accuracy of object recognition. 

Above: 128 5x5 pixel V1 prototypes sorted by activity after
 imprinting (left) and Hebbian learning (right).  

Left top: Sorted histogram of number of activations of learned
 5x5 prototypes in response to different numbers of retinal
 patches (cf., grey dashed line = random imprinting):
 blue=1,800, aqua=18,000, green=180,000,
 yellow=1,800,000, red = 18,000,000. 
Left middle:  Sorted histogram of number of activations of
 learned 7x7 prototypes in response retinal patches (cf., grey
 dashed line = random imprinting): blue=1,800, aqua=18,000,
 green=180,000,  red = 1,800,000. 
Left bottom: Kullback–Leibler divergence of activation
 distributions for 5x5 (red points) and 7x7 (blue points),
 relative to the final (red curves) in upper and middle panels.  
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Convergence of V1 S-cell Columns for Large Datasets 

Scaling of IT Classifier Performance for Large Datasets 

IT is modeled by a conventional binary classifier,
 typically a support vector machine (SVM).  We show
 performance of the IT classifier for the datasets
 introduced previously.  

In each case, we show performance for the standard
 V2 imprinting algorithm (Serre, et al., 2007 [4]) (red
 dashed line) and for a V2 whose tunings are set  
using Hebbian learning (blue solid line).  
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Towards full-scale, real-time models of visual cortex 
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Blu-Ray 1080p @ 24 fps 

Eye ~2 Mpixels @ 10 fps 

SDTV 480p @ 30 fps 

WebCam 240p @ 15 fps 

We have built a high-performance implementation of an HMAX-type hierarchical feed-forward
 model of V1-V2-IT, called PANN [8].  As shown above, on a 20 Opteron core cluster, where  
each core has access to a dedicated Cell Broadband Engine, we currently reach processing
 levels above 1M pixels/second, sufficient for real-time processing of webcam-quality video
 streams.  LANL’s petascale computing machine, Roadrunner, consists of ~10,000 Cell
-accelerated cores, so that even with less than ideal (linear) scaling (blue dashed line above),  
we expect to process human eye-like video streams in real-time.  

Animal vs No Animal 


